Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 307
Filter
1.
Sci Rep ; 14(1): 10596, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38720048

ABSTRACT

To investigate the association between hereditary hearing loss and vestibular function, we compared vestibular function and symptoms among patients with GJB2, SLC26A4, and CDH23 variants. Thirty-nine patients with sensory neural hearing loss (11 males and 28 females) with biallelic pathogenic variants in either GJB2, SLC26A4, or CDH23 were included in this study (13 GJB2, 15 SLC26A4, and 11 CDH23). The patients were examined using caloric testing and cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP). We also compared vestibular function and symptoms between patients with these gene variants and 78 normal-hearing ears without vestibular symptoms as controls. The frequency of semicircular canal hypofunction in caloric testing was higher in patients with SLC26A4 variants (47%) than in those with GJB2 (0%) and CDH23 variants (27%). According to the cVEMP results, 69% of patients with GJB2 variants had saccular hypofunction, a significantly higher proportion than in those carrying other variants (SLC26A4, 20%; CDH23, 18%). In oVEMP, which reflects utricular function, no difference was observed in the frequency of hypofunction among the three genes (GJB2, 15%; SLC26A4, 40%; and CDH23, 36%). Hence, discernable trends indicate vestibular dysfunction associated with each gene.


Subject(s)
Cadherin Related Proteins , Cadherins , Connexin 26 , Sulfate Transporters , Humans , Female , Male , Cadherins/genetics , Sulfate Transporters/genetics , Connexin 26/genetics , Adult , Adolescent , Middle Aged , Child , Young Adult , Vestibular Evoked Myogenic Potentials , Membrane Transport Proteins/genetics , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Vestibular Function Tests , Child, Preschool , Vestibule, Labyrinth/physiopathology , Connexins/genetics
2.
BMC Pediatr ; 24(1): 305, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704545

ABSTRACT

INTRODUCTION: Congenital chloride diarrhoea (CCD) is an autosomal recessive condition that causes secretory diarrhoea and potentially deadly electrolyte imbalances in infants because of solute carrier family 26 member 3 (SLC26A3) gene mutations. CASE PRESENTATION: A 7-month-old Chinese infant with a history of maternal polyhydramnios presented with frequent watery diarrhoea, severe dehydration, hypokalaemia, hyponatraemia, failure to thrive, metabolic alkalosis, hyperreninaemia, and hyperaldosteronaemia. Genetic testing revealed a compound heterozygous SLC26A3 gene mutation in this patient (c.269_270dup and c.2006 C > A). Therapy was administered in the form of oral sodium and potassium chloride supplements, which decreased stool frequency. CONCLUSIONS: CCD should be considered when an infant presents with prolonged diarrhoea during infancy, particularly in the context of maternal polyhydramnios and dilated foetal bowel loops.


Subject(s)
Diarrhea , Diarrhea/congenital , Metabolism, Inborn Errors , Mutation , Sulfate Transporters , Humans , Sulfate Transporters/genetics , Diarrhea/genetics , Infant , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/diagnosis , Chloride-Bicarbonate Antiporters/genetics , Female , Heterozygote , Male , Polyhydramnios/genetics , Potassium Chloride/therapeutic use , Potassium Chloride/administration & dosage , East Asian People
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673775

ABSTRACT

Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.


Subject(s)
Sulfate Transporters , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Animals , Kidney/metabolism , Chloride-Bicarbonate Antiporters/metabolism , Chloride-Bicarbonate Antiporters/genetics , Organ Specificity , Chlorides/metabolism , Ion Transport
4.
Article in Chinese | MEDLINE | ID: mdl-38563166

ABSTRACT

Objective:To analyze the mutation spectrum of 23-site chip newborn deafness genetic screening in Beijing, and to provide basis for genetic counseling and clinical diagnosis and treatment. Methods:The study included 21 006 babies born in Beijing from December 2022 to June 2023. All subjects underwent newborn deafness genetic screening in Beijing Tongren Hospital, covering 23 variants in 4 genes, the GJB2 gene(c.35delG, c.176_191del16, c.235delC, c.299_300delAT, c.109G>A, c.257C>G, c.512insAACG, c.427C>T, c.35insG), SLC26A4 gene(c.919-2A>G, c.2168A>G, c.1174A>T, c.1226G>A, c.1229C>T, c.1975G>C, c.2027T>A, c.589G>A, c.1707+5G>A, c.917insG, c.281C>T), Mt12SrRNA(m.1555A>G, m.1494C>T) and GJB3 gene(c.538C>T). The mutation detection rate and allele frequency were analyzed. Results:The overall mutation detection rate was 11.516%(2 419/21 006), with the GJB2 gene being the most frequently involved at 9.097%(1 911/21 006), followed by the SLC26A4 gene at 2.123%(446/21 006), the GJB3 gene at 0.362%(76/21 006) and Mt12SrRNA at 0.176%(37/21 006). Among the GJB2 genes, c.109G>A and c.235delC mutation detection rates were the highest, with 6.579%(1 382/21 006) and 1.795%(377/21 006), respectively. Of the SLC26A4 genes, c.919-2A>G and c.2168A>G had the highest mutation rates of 1.423%(299/21 006) and 0.233%(49/21 106), respectively. Regarding the allele frequency, GJB2 c.109G>A was the most common variant with an allele frequency of 3.359%(1 411/42 012), followed by the GJB2 c.235delC at 0.897%(377/42 012) and the SLC26A4 c.919-2A>G at 0.719%(302/42 012). Conclusion:23-site chip newborn deafness genetic screening in Beijing showed that GJB2 c.109G>A mutation detection rate and allele frequency were the highest. This study has enriched the epidemiological data of 23-site chip genetic screening mutation profiles for neonatal deafness, which can provide evidence for clinical practice.


Subject(s)
Deafness , Hearing Loss , Infant , Infant, Newborn , Humans , Connexins/genetics , Connexin 26/genetics , Deafness/genetics , Deafness/diagnosis , DNA Mutational Analysis , Sulfate Transporters/genetics , Genetic Testing , Mutation , Hearing Loss/genetics , Neonatal Screening , China
5.
Nat Commun ; 15(1): 3616, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684689

ABSTRACT

SLC26A2 is a vital solute carrier responsible for transporting essential nutritional ions, including sulfate, within the human body. Pathogenic mutations within SLC26A2 give rise to a spectrum of human diseases, ranging from lethal to mild symptoms. The molecular details regarding the versatile substrate-transporter interactions and the impact of pathogenic mutations on SLC26A2 transporter function remain unclear. Here, using cryo-electron microscopy, we determine three high-resolution structures of SLC26A2 in complexes with different substrates. These structures unveil valuable insights, including the distinct features of the homodimer assembly, the dynamic nature of substrate binding, and the potential ramifications of pathogenic mutations. This structural-functional information regarding SLC26A2 will advance our understanding of cellular sulfate transport mechanisms and provide foundations for future therapeutic development against various human diseases.


Subject(s)
Cryoelectron Microscopy , Sulfate Transporters , Humans , Sulfate Transporters/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/chemistry , Mutation , Protein Binding , Models, Molecular , Sulfates/metabolism , Protein Multimerization , HEK293 Cells , Binding Sites
6.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38349781

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cell Membrane/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Sodium/metabolism , Models, Theoretical , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Antiporters/genetics , Antiporters/metabolism
7.
BMC Med Genomics ; 17(1): 55, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378613

ABSTRACT

BACKGROUND: Gene variants are responsible for more than half of hearing loss, particularly in nonsyndromic hearing loss (NSHL). The most common pathogenic variant in SLC26A4 gene found in East Asian populations is c.919-2A > G followed by c.2168A > G (p.H723R). This study was to evaluate their variant frequencies in patients with NSHL from special education schools in nine different areas of Southwest China's Yunnan. METHODS: We performed molecular characterization by PCR-products directly Sanger sequencing of the SLC26A4 c.919-2AG and c.2168 A > G variants in 1167 patients with NSHL including 533 Han Chinese and 634 ethnic minorities. RESULTS: The SLC26A4 c.919-2A > G variant was discovered in 8 patients with a homozygous state (0.69%) and twenty-five heterozygous (2.14%) in 1167 patients with NSHL. The total carrier rate of the c.919-2A > G variant was found in Han Chinese patients with 4.50% and ethnic minority patients with 1.42%. A significant difference existed between the two groups (P < 0.05). The c.919-2A > G allele variant frequency was ranged from 3.93% in Kunming to zero in Lincang and Nvjiang areas of Yunnan. We further detected the SLC26A4 c.2168 A > G variant in this cohort with one homozygotes (0.09%) and seven heterozygotes (0.60%), which was detected in Baoshan, Honghe, Licang and Pu`er areas. Between Han Chinese group (0.94%) and ethnic minority group (0.47%), there was no statistical significance (P > 0.05). Three Han Chinese patients (0.26%) carried compound heterozygosity for c.919-2A > G and c.2168 A > G. CONCLUSION: These data suggest that the variants in both SLC26A4 c.919-2A > G and c.2168 A > G were relatively less frequencies in this cohort compared to the average levels in most regions of China, as well as significantly lower than that in Han-Chinese patients. These results broadened Chinese population genetic information resources and provided more detailed information for regional genetic counselling for Yunnan.


Subject(s)
Deafness , Ethnicity , Membrane Transport Proteins , Humans , Ethnicity/genetics , Mutation , Membrane Transport Proteins/genetics , Minority Groups , China/epidemiology , Connexins/genetics , Sulfate Transporters/genetics
8.
Am J Physiol Cell Physiol ; 326(3): C829-C842, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38223928

ABSTRACT

Loss of function mutations in the SLC26A3 gene cause chloride-losing diarrhea in mice and humans. Although systemic adaptive changes have been documented in these patients and in the corresponding knockout mice, how colonic enterocytes adapt to loss of this highly expressed and highly regulated luminal membrane anion exchanger remains unclear. To address this question, SLC26A3 was deleted in the self-differentiating Caco2BBe colonic cell line by the CRISPR/Cas9 technique. We selected a clone with loss of SLC26A3 protein expression and morphological features indistinguishable from those of the native cell line. Neither growth curves nor development of transepithelial electrical resistance (TEER) differed between wild-type (WT) and SLC26A3 knockout (KO) cells. Real-time qPCR and Western analysis in SLC26A3-KO cells revealed an increase in AE2 expression without significant change in NHE3 expression or localization. Steady-state pHi and apical and basolateral Cl-/HCO3- exchange activities were assessed fluorometrically in a dual perfusion chamber with independent perfusion of luminal and serosal baths. Apical Cl-/HCO3- exchange rates were strongly reduced in SLC26A3-KO cells, accompanied by a surface pH more acidic than that of WT cells. Steady-state pHi was not significantly different from that of WT cells, but basolateral Cl-/HCO3- exchange rates were higher in SLC26A3-KO than in WT cells. The data show that CRISPR/Cas9-mediated SLC26A3 deletion strongly reduced apical Cl-/HCO3- exchange rate and apical surface pH, but sustained a normal steady-state pHi due to increased expression and function of basolateral AE2. The low apical surface pH resulted in functional inhibition of NHE-mediated fluid absorption despite normal expression of NHE3 polypeptide.NEW & NOTEWORTHY SLC26A3 gene mutations cause chloride-losing diarrhea. To understand how colonic enterocytes adapt, SLC26A3 was deleted in Caco2BBe cells using CRISPR/Cas9. In comparison to the wild-type cells, SLC26A3 knockout cells showed similar growth and transepithelial resistance but substantially reduced apical Cl-/HCO3- exchange rates, and an acidic surface pH. Steady-state intracellular pH was comparable between the WT and KO cells due to increased basolateral AE2 expression and function.


Subject(s)
Chlorides , Diarrhea , Humans , Animals , Mice , Sodium-Hydrogen Exchanger 3/genetics , Anions , Enterocytes , Hydrogen-Ion Concentration , Sulfate Transporters/genetics , Chloride-Bicarbonate Antiporters/genetics
9.
Am J Physiol Renal Physiol ; 326(2): F202-F218, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38059296

ABSTRACT

Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.


Subject(s)
Angiotensin II , Sulfate Transporters , rac1 GTP-Binding Protein , Animals , Mice , Aldosterone/pharmacology , Aldosterone/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , Mice, Knockout , NADPH Oxidases/metabolism , Sulfate Transporters/genetics , Superoxides/metabolism , rac1 GTP-Binding Protein/metabolism
10.
Eur Arch Otorhinolaryngol ; 281(2): 649-654, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37477685

ABSTRACT

BACKGROUND: The relationship between the hearing phenotype and the SLC26A4 mutation in enlarged vestibular aqueduct cases has not been fully elucidated. OBJECTIVES: To detect SLC26A4 mutation in a group of cases with enlarged vestibular aqueduct who received cochlear implantation and to analyze the correlation between the SLC26A4 genotype and the progression of deafness. MATERIALS AND METHODS: Twenty-nine enlarged vestibular aqueduct patients were selected. Using the Sanger sequence to analyze SLC26A4 gene mutations. The 29 cases were divided into group A (carrying the c.919-2A > G mutation) and group B (not carrying the c.919-2A > G mutation). The difference in the duration of deafness was analyzed between the two groups. RESULTS: The detection rate of the c.1174A > T mutation in the postlingual deafness group was 37.5%, higher than that in the prelingual deafness group (0%). The difference in the duration of deafness between groups A and B was not statistically significant by the Mann-Whitney U test (p > 0.05). CONCLUSIONS: The correlation between the SLC26A4 genotype and the duration of deafness in cases with enlarged vestibular aqueduct is not yet clear. However, the c.1174A > T mutation may be linked to delayed hearing loss and the progression of deafness may be relatively slow in some cases of c.919-2A > G mutation.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Vestibular Aqueduct , Humans , Membrane Transport Proteins/genetics , Hearing Loss, Sensorineural/genetics , Deafness/genetics , Mutation , Vestibular Aqueduct/diagnostic imaging , Sulfate Transporters/genetics
11.
Int J Pediatr Otorhinolaryngol ; 176: 111777, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029595

ABSTRACT

OBJECTIVES: The molecular etiology of non-syndromic hearing loss (NSHL) in Southeastern China (Fujian) has not been precisely identified. our study selected patients with NSHL and analyzed their causative genes, which helped to improve the accuracy of the diagnosis of hereditary hearing loss (HHL) and its treatment. METHODS: 251 unrelated patients who attended the otolaryngology clinic of Fujian Maternal and Child Health Hospital with hearing loss were enrolled to our study. All patients had genetic tests and listening tests, of which 251 were diagnosed with NSHL. In addition, we used whole-exome sequencing (WES) in a patient who has a significant family history of HHL but negative for gene chip testing, as well as in his family members. RESULT: Among of 251 patients, Nucleotide changes were found in 63 cases (25.09%), including 34 located in GJB2(13.5%, including 235delC and 299_300delAT), 13 located in SLC26A4(5.18%, including c.919-2G > A and 2168 A > G), 1 located in GJB3(0.4%,538C > T) and 16 located in mtDNA12SrRNA (6.37%,1555 A > G). In addition, we discuss the process of identifying novel PLS1 mutations from 251 patients. CONCLUSION: Our results demonstrate the conventional deafness gene mutation in 251 NSHL patients in Fujian, China. Compared with the other area of China, we have a lower detection rate, but GJB2 235delC remains the most common mutation in Fujian. In addition, we discuss the process of discovering novel mutation locus for deafness, which provides an understanding for deafness diagnosis and genetic testing.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Child , Humans , China , Connexin 26/genetics , Connexins/genetics , Deafness/diagnosis , Deafness/genetics , DNA Mutational Analysis , Hearing Loss/diagnosis , Hearing Loss/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Sulfate Transporters/genetics
12.
PeerJ ; 11: e16558, 2023.
Article in English | MEDLINE | ID: mdl-38111663

ABSTRACT

Thousands of genes are expressed in the testis of mice. However, the details about their roles during spermatogenesis have not been well-clarified for most genes. The purpose of this study was to examine the effect of Slc26a1 deficiency on mouse spermatogenesis and male fertility. Slc26a1-knockout (KO) mice were generated using CRISPR/Cas9 technology on C57BL/6J background. We found no obvious differences between Slc26a1-KO and Slc26a1-WT mice in fertility tests, testicular weight, sperm concentrations, or morphology. Histological analysis found that Slc26a1-KO mouse testes had normal germ cell types and mature sperm. These findings indicated that Slc26a1 was dispensable for male fertility in mice. Our results may save time and resources by allowing other researchers to focus on genes that are more meaningful for fertility studies. We also found that mRNAs of two Slc26a family members (Slc26a5 and Slc26a11) were expressed on higher mean levels in Slc26a1-KO total mouse testes, compared to Slc26a1-WT mice. This effect was not found in mouse GC-1 and GC-2 germ cell lines with the Slc26a1 gene transiently knocked down. This result may indicate that a gene compensation phenomenon was present in the testes of Slc26a1-KO mice.


Subject(s)
Antiporters , Fertility , Semen , Sulfate Transporters , Animals , Male , Mice , Fertility/genetics , Mice, Inbred C57BL , Mice, Knockout , Spermatogenesis/genetics , Testis/metabolism , Sulfate Transporters/genetics , Antiporters/genetics
13.
Proc Natl Acad Sci U S A ; 120(47): e2307551120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37967223

ABSTRACT

In cystic fibrosis (CF), defects in the CF transmembrane conductance regulator (CFTR) channel lead to an acidic airway surface liquid (ASL), which compromises innate defence mechanisms, predisposing to pulmonary failure. Restoring ASL pH is a potential therapy for people with CF, particularly for those who cannot benefit from current highly effective modulator therapy. However, we lack a comprehensive understanding of the complex mechanisms underlying ASL pH regulation. The calcium-activated chloride channel, TMEM16A, and the anion exchanger, SLC26A4, have been proposed as targets for restoring ASL pH, but current results are contradictory and often utilise nonphysiological conditions. To provide better evidence for a role of these two proteins in ASL pH homeostasis, we developed an efficient CRISPR-Cas9-based approach to knock-out (KO) relevant transporters in primary airway basal cells lacking CFTR and then measured dynamic changes in ASL pH under thin-film conditions in fully differentiated airway cultures, which better simulate the in vivo situation. Unexpectantly, we found that both proteins regulated steady-state as well as agonist-stimulated ASL pH, but only under inflammatory conditions. Furthermore, we identified two Food and Drug Administration (FDA)-approved drugs which raised ASL pH by activating SLC26A4. While we identified a role for SLC26A4 in fluid absorption, KO had no effect on cyclic adenosine monophosphate (cAMP)-stimulated fluid secretion in airway organoids. Overall, we have identified a role of TMEM16A in ASL pH homeostasis and shown that both TMEM16A and SLC26A4 could be important alternative targets for ASL pH therapy in CF, particularly for those people who do not produce any functional CFTR.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Nasal Mucosa/metabolism , Hydrogen-Ion Concentration , Mutation , Respiratory Mucosa/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism
14.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686084

ABSTRACT

The Cl--transporting proteins CFTR, SLC26A9, and anoctamin (ANO1; ANO6) appear to have more in common than initially suspected, as they all participate in the pathogenic process and clinical outcomes of airway and renal diseases. In the present review, we will therefore concentrate on recent findings concerning electrolyte transport in the airways and kidneys, and the role of CFTR, SLC26A9, and the anoctamins ANO1 and ANO6. Special emphasis will be placed on cystic fibrosis and asthma, as well as renal alkalosis and polycystic kidney disease. In essence, we will summarize recent evidence indicating that CFTR is the only relevant secretory Cl- channel in airways under basal (nonstimulated) conditions and after stimulation by secretagogues. Information is provided on the expressions of ANO1 and ANO6, which are important for the correct expression and function of CFTR. In addition, there is evidence that the Cl- transporter SLC26A9 expressed in the airways may have a reabsorptive rather than a Cl--secretory function. In the renal collecting ducts, bicarbonate secretion occurs through a synergistic action of CFTR and the Cl-/HCO3- transporter SLC26A4 (pendrin), which is probably supported by ANO1. Finally, in autosomal dominant polycystic kidney disease (ADPKD), the secretory function of CFTR in renal cyst formation may have been overestimated, whereas ANO1 and ANO6 have now been shown to be crucial in ADPKD and therefore represent new pharmacological targets for the treatment of polycystic kidney disease.


Subject(s)
Cystic Fibrosis , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Anoctamins , Membrane Transport Proteins , Sulfate Transporters/genetics , Antiporters
15.
J Int Adv Otol ; 19(4): 283-287, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37528592

ABSTRACT

BACKGROUND: Hainan Province is the southernmost island in China, far from the mainland, and the resident population changes little. In order to understand the mutation spectrum in Hainan and provide effective genetic counseling for deaf people, we carried out genetic analysis on the non-comprehensive hearing impairment in this population. Therefore, in this study, 183 children with moderate sensorineural deafness in the northeast of Hainan were analyzed with susceptibility gene carrying and gene mutation, providing some reference for hainan to guide the prevention and treatment of deafness. METHODS: Complete clinical evaluations were performed on 183 unrelated patients with a non-syndromic hearing impairment from Hainan Province. Each subject was screened for common mutations using the matrix-assisted laser desorption ionization-time of flight mass spectrometry, including GJB2 c.35delG,c.235delC,c.299_300del AT,c.176_191del16,c.167delT; GJB3 c.538 C>T,c.547G >A;SLC26A4 IVS7-2 A>G,c.2168 A>G,c.1174A>T,c.1229 C>T,c.1226G>A,c.1975G>C,c.2027T>A,c.2162C>T,c.281C>T,c.589G>A,IVS15+5G>A; and mtRNA 1494 C>T,1555 A>G. RESULTS: Genetic analysis showed that GJB2, SLC26A4, and mitochondrial M. 1555A > G mutations accounted for 7.10%, 8.74%, and 0.55% of the etiology of non-syndromic hearing impairment, respectively. Common mutations include GJB2 C. 235delC, SLC26A4 c.I vs7-2a →G, C. 2168A→G, and mitochondrial M. 1555A > G. The total mutation rate in Hainan was 16.39%. CONCLUSION: Our study is the first one to carry out genetic analysis on non-syndromic hearing impairment in Hainan. The results show that in the cases of non-syndromic hearing impairment in these areas, there is a clear genetic cause accounted for 16.39%, and the mutation hot spots are mainly GJB2 and SLC26A4, and SLC26A4 is the most common mutation site. This study provides useful and targeted information for genetic counseling of deafness in people with non-syndromic hearing impairment in Hainan.


Subject(s)
Deafness , Hearing Loss , Child , Humans , Connexins/genetics , Connexin 26/genetics , Deafness/genetics , Asian People/genetics , DNA, Mitochondrial/genetics , RNA, Ribosomal/genetics , Sulfate Transporters/genetics , Mutation/genetics
16.
Plant Cell Environ ; 46(11): 3558-3574, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37545348

ABSTRACT

Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.


Subject(s)
Medicago truncatula , Nitrogen Fixation , Nitrogen Fixation/genetics , Root Nodules, Plant/metabolism , Medicago truncatula/genetics , Medicago truncatula/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Symbiosis/genetics , Sulfates/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Am J Physiol Renal Physiol ; 325(3): F377-F393, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37498547

ABSTRACT

The urinary potassium (K+) excretion machinery is upregulated with increasing dietary K+, but the role of accompanying dietary anions remains inadequately characterized. Poorly absorbable anions, including [Formula: see text], are thought to increase K+ secretion through a transepithelial voltage effect. Here, we tested if they also influence the K+ secretion machinery. Wild-type mice, aldosterone synthase (AS) knockout (KO) mice, or pendrin KO mice were randomized to control, high-KCl, or high-KHCO3 diets. The K+ secretory capacity was assessed in balance experiments. Protein abundance, modification, and localization of K+-secretory transporters were evaluated by Western blot analysis and confocal microscopy. Feeding the high-KHCO3 diet increased urinary K+ excretion and the transtubular K+ gradient significantly more than the high-KCl diet, coincident with more pronounced upregulation of epithelial Na+ channels (ENaC) and renal outer medullary K+ (ROMK) channels and apical localization in the distal nephron. Experiments in AS KO mice revealed that the enhanced effects of [Formula: see text] were aldosterone independent. The high-KHCO3 diet also uniquely increased the large-conductance Ca2+-activated K+ (BK) channel ß4-subunit, stabilizing BKα on the apical membrane, the Cl-/[Formula: see text] exchanger, pendrin, and the apical KCl cotransporter (KCC3a), all of which are expressed specifically in pendrin-positive intercalated cells. Experiments in pendrin KO mice revealed that pendrin was required to increase K+ excretion with the high-KHCO3 diet. In summary, [Formula: see text] stimulates K+ excretion beyond a poorly absorbable anion effect, upregulating ENaC and ROMK in principal cells and BK, pendrin, and KCC3a in pendrin-positive intercalated cells. The adaptive mechanism prevents hyperkalemia and alkalosis with the consumption of alkaline ash-rich diets but may drive K+ wasting and hypokalemia in alkalosis.NEW & NOTEWORTHY Dietary anions profoundly impact K+ homeostasis. Here, we found that a K+-rich diet, containing [Formula: see text] as the counteranion, enhances the electrogenic K+ excretory machinery, epithelial Na+ channels, and renal outer medullary K+ channels, much more than a high-KCl diet. It also uniquely induces KCC3a and pendrin, in B-intercalated cells, providing an electroneutral KHCO3 secretion pathway. These findings reveal new K+ balance mechanisms that drive adaption to alkaline and K+-rich foods, which should guide new treatment strategies for K+ disorders.


Subject(s)
Alkalosis , Potassium , Animals , Mice , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Anions/metabolism , Diet , Mice, Knockout , Potassium/metabolism , Potassium, Dietary/metabolism , Sodium/metabolism , Sulfate Transporters/genetics
18.
Neurobiol Dis ; 183: 106194, 2023 07.
Article in English | MEDLINE | ID: mdl-37295562

ABSTRACT

Patients with SLC26A4 mutations exhibit highly variable hearing loss and vestibular dysfunction. Although Slc26a4 mutant mice similarly exhibit vestibular deficits, including circling behavior, head tilting, and torticollis, the underlying pathogenesis of the vestibular symptoms remains unclear, hindering its effective management for patients with SLC26A4 mutations. In this study, we evaluated the equilibrium function using the inspection equipment, which can record eye movements against rotational, gravitational, and thermal stimulations. Moreover, we correlated the degree of functional impairment with the morphological alterations observed in Slc26a4Δ/Δ mice. The rotational stimulus and ice water caloric tests revealed considerable impairment of the semicircular canal, while the tilted gravitational stimulus test showed a severe functional decline of the otolithic system in Slc26a4Δ/Δ mice. Generally, the degree of impairment was more severe in circling Slc26a4Δ/Δ mice than in non-circling Slc26a4Δ/Δ mice. In non-circling Slc26a4Δ/Δ mice, the semicircular canal function was normal. Micro-computed tomography results showed enlargement of the vestibular aqueduct and bony semicircular canals but no correlative relationship between the severity of the caloric response and the size of bony labyrinths. Giant otoconia and a significant decrease in total otolith volume in the saccule and utricle were observed in Slc26a4Δ/Δ mice. However, the giant otoconia were not overly dislocated in the bony otolithic system and ectopic otoconia were absent in the semicircular canal. The number and morphology of the utricular hair cells in Slc26a4Δ/Δ mice were not significantly reduced compared to those in Slc26a4Δ/+ mice. Collectively, we can conclude that vestibular impairments are mainly associated with otoconia formation and morphology rather than hair cell degeneration. In addition, severe disturbances of semicircular canals cause circling behavior in Slc26a4Δ/Δ mice. Our comprehensive morphological and functional assessments apply to mouse models of other genetic diseases with vestibular impairment.


Subject(s)
Vestibular Aqueduct , Mice , Animals , X-Ray Microtomography , Sulfate Transporters/genetics , Mice, Knockout , Mutation
19.
BMC Med Genomics ; 16(1): 133, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322474

ABSTRACT

BACKGROUND: The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS: We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS: We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION: Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.


Subject(s)
Deafness , Stria Vascularis , Mice , Animals , Stria Vascularis/metabolism , Stria Vascularis/pathology , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cochlea/metabolism , Cochlea/pathology , Deafness/genetics , Sulfate Transporters/genetics , RNA/metabolism
20.
Expert Opin Pharmacother ; 24(14): 1545-1565, 2023.
Article in English | MEDLINE | ID: mdl-37379072

ABSTRACT

INTRODUCTION: Cystic fibrosis (CF), a potentially fatal genetic disease, is caused by loss-of-function mutations in the gene encoding for the CFTR chloride/bicarbonate channel. Modulator drugs rescuing mutant CFTR traffic and function are now in the clinic, providing unprecedented breakthrough therapies for people with CF (PwCF) carrying specific genotypes. However, several CFTR variants are unresponsive to these therapies. AREA COVERED: We discussed several therapeutic approaches that are under development to tackle the fundamental cause of CF, including strategies targeting defective CFTR mRNA and/or protein expression and function. Alternatively, defective chloride secretion and dehydration in CF epithelia could be restored by exploiting pharmacological modulation of alternative targets, i.e., ion channels/transporters that concur with CFTR to maintain the airway surface liquid homeostasis (e.g., ENaC, TMEM16A, SLC26A4, SLC26A9, and ATP12A). Finally, we assessed progress and challenges in the development of gene-based therapies to replace or correct the mutant CFTR gene. EXPERT OPINION: CFTR modulators are benefiting many PwCF responsive to these drugs, yielding substantial improvements in various clinical outcomes. Meanwhile, the CF therapy development pipeline continues to expand with the development of novel CFTR modulators and alternative therapeutic strategies with the ultimate goal of providing effective therapies for all PwCF in the foreseeable future.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Chlorides/metabolism , Chlorides/therapeutic use , Molecular Targeted Therapy , Genotype , Mutation , Sulfate Transporters/genetics , Sulfate Transporters/therapeutic use , Antiporters/genetics , H(+)-K(+)-Exchanging ATPase/genetics , H(+)-K(+)-Exchanging ATPase/metabolism , H(+)-K(+)-Exchanging ATPase/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...